FIGURE

Fig. S3

ID
ZDB-FIG-120710-66
Publication
Delous et al., 2012 - sox9b Is a Key Regulator of Pancreaticobiliary Ductal System Development
Other Figures
All Figure Page
Back to All Figure Page
Fig. S3

sox9b mutants show defects in bile secretion and transport as assessed by BODIPY-FL analog feeding. (A–B) Fluorescent micrographs of 7 dpf live wild-type (A) and sox9b mutant (B) larvae after BODIPY feeding showing lack of filling of the gallbladder (arrowhead) in sox9b mutants (B). Lateral views, anterior (A) to the left. (C–F) Confocal images of Tg(Tp1bglob:H2B-mCherry) wild-type (upper panel) and sox9b mutant (lower panel) larvae showing morphological and functional defects of both intrahepatic (D) and intrapancreatic (F) ductal networks compared to wild-type (C and E). In the mutants, both intrahepatic and intrapancreatic ducts appear to be dilated (D and F). Fluids (bile or pancreatic juice) also appear to accumulate in the pancreatic tail (arrows, F). Dashed squares represent areas shown in higher magnification for intrahepatic (C′–D′) and intrapancreatic (E2–F2) ducts in wild-types (upper panel) and sox9b mutants (lower panel). sox9b mutants showed defects in bile canaliculi (comparing arrowheads in C′, D′) and terminal pancreatic ducts (comparing arrowheads in E′, F′). 9 larvae were analyzed for each genotype. (C–F) All images are projections of confocal z-stacks. (C–F) Lateral views, anterior (A) to the left. Dashed lines in E and F outline the pancreas. g, gut; Li, liver. Scale bars, 20 μm.

Expression Data

Expression Detail
Antibody Labeling
Phenotype Data

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ PLoS Genet.