FIGURE

Fig. 1

ID
ZDB-FIG-220824-2
Publication
Karampelias et al., 2022 - MNK2 deficiency potentiates β-cell regeneration via translational regulation
Other Figures
All Figure Page
Back to All Figure Page
Fig. 1

YChemH screen identifies MNK2 as the molecular target of CID661578.

a, Schema for the screening of compounds increasing β-cell regeneration using a transgenic zebrafish model for β-cell ablation and approximately 10,000 compounds. The hits included four compounds affecting adenosine signaling and CID661578 with an unknown mechanism. b, Schematic showing the structures of CID661578 and the analog CID661578.6 along with the screening strategy (YChemH). The red circles highlight the structures that were altered in CID661578. Survival of yeast on selective histidine-free medium was the output of the screen for clones expressing interactors of the CID661578.6 bait; TMP, trimethoprim; AD, activation domain. c, Table summarizing the top hits of the YChemH screen from the two cDNA libraries. The A-classified hits (drl and acin1b from the zebrafish embryo library and MKNK2 from the human islet library) have a higher probability of being true targets of CID661578.6 than B- and C-classified hits. d, Validation of the MNK2–CID661578.6 interaction with different concentrations of CID661578.6 bait and an MNK2-expressing yeast clone. DMSO demonstrates the sensitivity to the selective medium, and yeast clones did not survive in the selective histidine-free medium. The interaction between MNK2 and CID661578.6 promoted yeast survival, as illustrated by the multiple colonies at the four spots of inoculation (decreasing levels of inoculation from the top to the bottom). Each condition was tested in two replicates. e, Validation of the zebrafish Mnk2b–CID661578.6 interaction with different concentrations of CID661578.6 bait and two different DHFR hook vectors. Experiments using the original hook vector, N-LexA–DHFR-C, are listed as 1, 2 and 3. Experiments using the modified vector with the reverse order, N-DHFR–LexA-C, are listed as 4, 5 and 6. Both full-length zebrafish Mnk2b (3 and 6) and a fragment (2 and 4) corresponding to the original fragment of the human MNK2 identified in the screen were used. Human MNK2 was used as a positive control (1 and 4), and zebrafish Mnk2b only mediated binding when expressed by the hook vector with the reverse order (5 and 6) to the one used in the original screen (explaining why zebrafish Mnk2b did not show up as a hit in the original screen).

Expression Data

Expression Detail
Antibody Labeling
Phenotype Data

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ Nat. Chem. Biol.