PUBLICATION
Organization of the gravity-sensing system in zebrafish
- Authors
- Liu, Z., Hildebrand, D.G.C., Morgan, J.L., Jia, Y., Slimmon, N., Bagnall, M.W.
- ID
- ZDB-PUB-220829-1
- Date
- 2022
- Source
- Nature communications 13: 5060 (Other)
- Registered Authors
- Keywords
- none
- MeSH Terms
-
- Animals
- Eye Movements
- Gravity Sensing
- Larva
- Vestibule, Labyrinth*
- Zebrafish*
- PubMed
- 36030280 Full text @ Nat. Commun.
Citation
Liu, Z., Hildebrand, D.G.C., Morgan, J.L., Jia, Y., Slimmon, N., Bagnall, M.W. (2022) Organization of the gravity-sensing system in zebrafish. Nature communications. 13:5060.
Abstract
Motor circuits develop in sequence from those governing fast movements to those governing slow. Here we examine whether upstream sensory circuits are organized by similar principles. Using serial-section electron microscopy in larval zebrafish, we generated a complete map of the gravity-sensing (utricular) system spanning from the inner ear to the brainstem. We find that both sensory tuning and developmental sequence are organizing principles of vestibular topography. Patterned rostrocaudal innervation from hair cells to afferents creates an anatomically inferred directional tuning map in the utricular ganglion, forming segregated pathways for rostral and caudal tilt. Furthermore, the mediolateral axis of the ganglion is linked to both developmental sequence and neuronal temporal dynamics. Early-born pathways carrying phasic information preferentially excite fast escape circuits, whereas later-born pathways carrying tonic signals excite slower postural and oculomotor circuits. These results demonstrate that vestibular circuits are organized by tuning direction and dynamics, aligning them with downstream motor circuits and behaviors.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping