PUBLICATION
Common genetic control of haemangioblast and cardiac development in zebrafish
- Authors
- Peterkin, T., Gibson, A., and Patient, R.
- ID
- ZDB-PUB-090324-3
- Date
- 2009
- Source
- Development (Cambridge, England) 136(9): 1465-1474 (Journal)
- Registered Authors
- Gibson, Abigail, Patient, Roger K., Peterkin, Tessa
- Keywords
- Myelopoiesis, Cardiogenesis, GATA factors, Second heart field, Haemangioblasts, Transcriptional regulation, Evolution, Adult stem cells, Zebrafish
- MeSH Terms
-
- Animals
- Animals, Genetically Modified
- Cell Lineage
- Cell Movement
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Endoderm/cytology
- Endoderm/embryology
- Endoderm/metabolism
- GATA Transcription Factors/genetics
- GATA Transcription Factors/metabolism
- GATA5 Transcription Factor/genetics
- GATA5 Transcription Factor/metabolism
- Gene Expression Regulation, Developmental
- Heart/embryology*
- Hemangioblasts/metabolism*
- Mesoderm/cytology
- Mesoderm/embryology
- Mesoderm/metabolism
- Myocardium/metabolism*
- Zebrafish/embryology*
- Zebrafish/genetics
- Zebrafish/metabolism*
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
- PubMed
- 19297410 Full text @ Development
Citation
Peterkin, T., Gibson, A., and Patient, R. (2009) Common genetic control of haemangioblast and cardiac development in zebrafish. Development (Cambridge, England). 136(9):1465-1474.
Abstract
Over the past few years it has become clear that over half of the mammalian heart derives from outside the heart field as originally defined. Such a second heart field, however, has not been described in zebrafish, which could explain its smaller, two-chambered heart. Instead, zebrafish have a population of haemangioblasts, which is absent in mammalian embryos, raising the possibility that these cells represent the evolutionary ancestor of the second heart field. Here, we show for the first time that the genetic programmes of these anterior haemangioblasts and the adjacent heart field are co-regulated, by transcription factors previously associated with heart but not blood or endothelial development. We demonstrate that gata4, gata5 and gata6 are essential for anterior haemangioblast specification, and for subsequent myelopoiesis, acting as early as cloche and upstream of scl. The requirement for gata4, gata5 and gata6 in myeloid, endothelial and cardiac specification is in the mesoderm, but these factors also control, from within the endoderm and the yolk syncytial layer, the migration of the cardiac precursors as they differentiate. This genetic link between the blood/endothelial and cardiac programmes supports the notion that this haemangioblast population in zebrafish is an evolutionary antecedent of the second heart field, and has implications for the differentiation of haemangioblasts and cardiomyocytes from pluripotent cells, and for the origins of stem cells in the adult heart.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping