An increase in chromatin accessibility predicts future gene expression, especially at Pou5f3/Sox19b/Nanog-regulated regions.a) Promoter regions were sorted into 20% quintiles based on accessibility increase between 256-cell and oblong stage, and violin plots show the expression value of associated genes at sphere stage. p-values are shown for differences in expression between the quintiles as assessed by one-sided Wilcoxon tests. b) Putative enhancer regions were sorted into 20% quintiles based on accessibility increase between 256-cell and oblong stage and violin plots show the expression value of associated genes at sphere stage. p-values are shown for differences in expression between quintiles as assessed by one-sided Wilcoxon tests. c) Heatmaps show the median expression value for genes associated with regulatory regions at sphere stage. Genomic regions are resolved by 20% bins of accessibility increase between 256-cell and oblong stage (x-axis), and 20% bins of accessibility change in MZpou5f3, MZsox19b and MZnanog mutants compared to wild-type embryos at oblong stage (y-axis). d) Heatmaps show the mean z-score normalized H3K27ac signal at the same genomic regions as in C. e) Regulatory elements were binned into 20% quintiles based on accessibility change in MZpou5f3, MZsox19b and MZnanog mutants compared to wild-type embryos, and violin plots show the enrichment (ChIP/Input) of Eomesa, Mxtx2, Smad2 and FoxH1 binding at blastula stages [24,81,82]. *FoxH1 signal was normalized to the genome-wide mean as no input sample was available. p-values are shown for differences in TF binding strength between the different bins as assessed by one-sided Wilcoxon tests.
|