- Title
-
An Essential Role for DYF-11/MIP-T3 in Assembling Functional Intraflagellar Transport Complexes
- Authors
- Li, C., Inglis, P.N., Leitch, C.C., Efimenko, E., Zaghloul, N.A., Mok, C.A., Davis, E.E., Bialas, N.J., Healey, M.P., Héon, E., Zhen, M., Swoboda, P., Katsanis, N., and Leroux, M.R.
- Source
- Full text @ PLoS Genet.
Zebrafish mipt3 is required for morphogenetic development and acts synergistically with the gene encoding the basal body/ciliary protein, BBS4. EXPRESSION / LABELING:
PHENOTYPE:
|
Gastrulation phenotypes in mipt3 morphant embryos. (A) Injection of a progressively increasing amount of a translation-blocking mipt3 morpholino (MO) gives rise to a spectrum of gastrulation phenotypes, including shortening of the embryonic axis, broadening and kinking of the notochord, lengthening of the somites and detachment of cells along the embryonic axis. The presence of two of these phenotypes is scored as “Class I”, whereas three or more phenotypes are categorized as “Class II”. (B) Body gap angle measurements for mipt3 and bbs4 morphants. The gap angle of mid-somitic embryos (nine somites +/- one somite) as defined by the angle formed by triangulating three points (tip of head, tip of tail, center of yolk; see also Gerdes et al., 2007) was calculated to capture the mean length of embryo populations (n = 50–70 embryos). On the y-axis, the angle is plotted (in degrees) while the x-axis shows the various injection cocktails. The phenotype is rescued efficiently by co-injection of capped mipt3 mRNA. Note the significantly shorter embryos in the mipt3+bbs4 double morphants. Data were calculated blind to injection cocktail; bars depict standard error. PHENOTYPE:
|