Lab

Rohr Lab

Lab ID
ZDB-LAB-050503-1
PI / Directory
Rohr, Klaus
Contact Person
Rohr, Klaus
Email
klaus.rohr@uni-koeln.de
URL
http://www.uni-koeln.de/math-nat-fak/ebio/Deutsch/Rohr/index.html
Address
Department of Developmental Biology University of Cologne Gyrhofstrasse 17 Köln, 50923 Germany
Country
Germany
Phone
+49 221 470 2068
Fax
+49 221 470 5164
Line Designation
None assigned
Genomic Features
Statement of Research Interest
Molecular and cellular aspects of thyroid development
The thyroid gland develops from the ventral midline of the pharynx. After evagination from the pharyngeal epithelium, the thyroid primordium relocates deep into the cervical mesenchyme, in humans finally reaching a position at the base of the neck, in front of the trachea. In humans, defects in thyroid development can cause absence of the thyroid gland at birth (agenesis) or malformations like ectopic localisation of the gland. Such defects can compromise thyroid hormone production and then lead to congenital hypothyroidism. The molecular, genetic and cellular basis of thyroid development is poorly understood. A few genes have been identified to be required for thyroid development, most of them encoding transcription factors that are required in primordial cells for differentiation and, at least in part, for later thyroid hormone production. However, it is still unknown how the thyroid primordium is
induced, what the molecular mechanisms of relocation ("migration") are and how the gland is morphogenetically shaped.

In our current projects, we analyse various aspects of thyroid development mainly in zebrafish, and to a lesser extend also in mouse and lamprey. Our goal is to understand how the gland develops on the cellular and molecular level. Identification and characterisation of zebrafish mutants allow us to identify so far unknown genes required for thyroid development. Zebrafish embryos are particularly well suited for analyses and embryonic manipulation due to their transparency, rapid development, and large clutches of eggs. Morphologically, the zebrafish thyroid develops basically like in other vertebrates. A minor difference is that fish do not form a compact gland, but have their thyroid tissue dispersed along the ventral aorta (anatomically this is very similar to the position of the
gland in mammals). Molecular mechanisms are conserved: we found that the genes Thyroid Transcription Factor1, Pax8, and Hhex have comparable functions in zebrafish and mouse thyroid development.
Lab Members
Alt, Burkhard Graduate Student Elsalini, Osama Graduate Student Wendl, Thomas Graduate Student
von Gartzen, Julia Technical Staff Adzic, Dejan Reibe, Saskia
Zebrafish Publications of lab members