PUBLICATION

The Osteoblast Transcriptome in Developing Zebrafish Reveals Key Roles for Extracellular Matrix Proteins Col10a1a and Fbln1 in Skeletal Development and Homeostasis

Authors
Raman, R., Antony, M., Nivelle, R., Lavergne, A., Zappia, J., Guerrero-Limón, G., Caetano da Silva, C., Kumari, P., Sojan, J.M., Degueldre, C., Bahri, M.A., Ostertag, A., Collet, C., Cohen-Solal, M., Plenevaux, A., Henrotin, Y., Renn, J., Muller, M.
ID
ZDB-PUB-240225-19
Date
2024
Source
Biomolecules   14(2): (Journal)
Registered Authors
Lavergne, Arnaud, Muller, Marc
Keywords
ECM, FGF8, col10a1a, fbln1, gene expression, osteoblast, skeletal development, transcriptome, vertebra, zebrafish
MeSH Terms
  • Animals
  • Cell Differentiation
  • Collagen Type X*/genetics
  • Collagen Type X*/physiology
  • Extracellular Matrix/genetics
  • Extracellular Matrix Proteins*/genetics
  • Extracellular Matrix Proteins*/metabolism
  • Homeostasis/genetics
  • Minerals/metabolism
  • Osteoblasts*/metabolism
  • Transcriptome/genetics
  • Zebrafish*/genetics
  • Zebrafish*/growth & development
PubMed
38397376 Full text @ Biomolecules
Abstract
Zebrafish are now widely used to study skeletal development and bone-related diseases. To that end, understanding osteoblast differentiation and function, the expression of essential transcription factors, signaling molecules, and extracellular matrix proteins is crucial. We isolated Sp7-expressing osteoblasts from 4-day-old larvae using a fluorescent reporter. We identified two distinct subpopulations and characterized their specific transcriptome as well as their structural, regulatory, and signaling profile. Based on their differential expression in these subpopulations, we generated mutants for the extracellular matrix protein genes col10a1a and fbln1 to study their functions. The col10a1a-/- mutant larvae display reduced chondrocranium size and decreased bone mineralization, while in adults a reduced vertebral thickness and tissue mineral density, and fusion of the caudal fin vertebrae were observed. In contrast, fbln1-/- mutants showed an increased mineralization of cranial elements and a reduced ceratohyal angle in larvae, while in adults a significantly increased vertebral centra thickness, length, volume, surface area, and tissue mineral density was observed. In addition, absence of the opercle specifically on the right side was observed. Transcriptomic analysis reveals up-regulation of genes involved in collagen biosynthesis and down-regulation of Fgf8 signaling in fbln1-/- mutants. Taken together, our results highlight the importance of bone extracellular matrix protein genes col10a1a and fbln1 in skeletal development and homeostasis.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping