PUBLICATION
Zebrafish ELL-associated factors Eaf1/2 modulate erythropoiesis via regulating gata1a expression and WNT signaling to facilitate hypoxia tolerance
- Authors
- Liu, W., Lin, S., Li, L., Tai, Z., Liu, J.X.
- ID
- ZDB-PUB-230402-47
- Date
- 2023
- Source
- Cell regeneration (London, England) 12: 1010 (Journal)
- Registered Authors
- Liu, Jing-xia
- Keywords
- EAF1/2, Erythropoiesis, H3K27me3, TCF4, WNT/β-Catenin signaling, gata1a/scl/lmo2
- MeSH Terms
- none
- PubMed
- 37002435 Full text @ Cell Regen (Lond)
Citation
Liu, W., Lin, S., Li, L., Tai, Z., Liu, J.X. (2023) Zebrafish ELL-associated factors Eaf1/2 modulate erythropoiesis via regulating gata1a expression and WNT signaling to facilitate hypoxia tolerance. Cell regeneration (London, England). 12:1010.
Abstract
EAF1 and EAF2, the eleven-nineteen lysine-rich leukemia (ELL)-associated factors which can assemble to the super elongation complex (AFF1/4, AF9/ENL, ELL, and P-TEFb), are reported to participate in RNA polymerase II to actively regulate a variety of biological processes, including leukemia and embryogenesis, but whether and how EAF1/2 function in hematopoietic system related hypoxia tolerance during embryogenesis remains unclear. Here, we unveiled that deletion of EAF1/2 (eaf1-/- and eaf2-/-) caused reduction in hypoxia tolerance in zebrafish, leading to reduced erythropoiesis during hematopoietic processes. Meanwhile, eaf1-/- and eaf2-/- mutants showed significant reduction in the expression of key transcriptional regulators scl, lmo2, and gata1a in erythropoiesis at both 24 h post fertilization (hpf) and 72 hpf, with gata1a downregulated while scl and lmo2 upregulated at 14 hpf. Mechanistically, eaf1-/- and eaf2-/- mutants exhibited significant changes in the expression of epigenetic modified histones, with a significant increase in the binding enrichment of modified histone H3K27me3 in gata1a promoter rather than scl and lmo2 promoters. Additionally, eaf1-/- and eaf2-/- mutants exhibited a dynamic expression of canonical WNT/β-catenin signaling during erythropoiesis, with significant reduction in p-β-Catenin level and in the binding enrichment of both scl and lmo2 promoters with the WNT transcriptional factor TCF4 at 24 hpf. These findings demonstrate an important role of Eaf1/2 in erythropoiesis in zebrafish and may have shed some light on regeneration medicine for anemia and related diseases and on molecular basis for fish economic or productive traits, such as growth, disease resistance, hypoxia tolerance, and so on.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping