PUBLICATION

Zebrafish can regenerate endoskeleton in larval pectoral fin but the regenerative ability declines

Authors
Yoshida, K., Kawakami, K., Abe, G., Tamura, K.
ID
ZDB-PUB-200519-6
Date
2020
Source
Developmental Biology   463(2): 110-123 (Journal)
Registered Authors
Kawakami, Koichi
Keywords
Endoskeleton, Epimorphic, Fin, Regeneration, Zebrafish
MeSH Terms
  • Animal Fins/physiology*
  • Animals
  • Gene Expression Regulation*
  • Homeodomain Proteins/biosynthesis*
  • Homeodomain Proteins/genetics
  • Regeneration*
  • Zebrafish/genetics
  • Zebrafish/metabolism*
  • Zebrafish Proteins/biosynthesis*
  • Zebrafish Proteins/genetics
PubMed
32422142 Full text @ Dev. Biol.
Abstract
We show for the first time endoskeletal regeneration in the developing pectoral fin of zebrafish. The developing pectoral fin contains an aggregation plate of differentiated chondrocytes (endochondral disc; primordium for endoskeletal components, proximal radials). The endochondral disc can be regenerated after amputation in the middle of the disc. The regenerated disc sufficiently forms endoskeletal patterns. Early in the process of regenerating the endochondral disc, epithelium with apical ectodermal ridge (AER) marker expression rapidly covers the amputation plane, and mesenchymal cells start to actively proliferate. Taken together with re-expression of a blastema marker gene, msxb, and other developmental genes, it is likely that regeneration of the endochondral disc recaptures fin development as epimorphic limb regeneration does. The ability of endoskeletal regeneration declines during larval growth, and adult zebrafish eventually lose the ability to regenerate endoskeletal components such that amputated endoskeletons become enlarged. Endoskeletal regeneration in the zebrafish pectoral fin will serve as a new model system for successful appendage regeneration in mammals.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping