PUBLICATION
A Gene Implicated in Activation of Retinoic Acid Receptor Targets is a Novel Renal Agenesis Gene in Humans
- Authors
- Brophy, P.D., Rasmussen, M., Parida, M., Bonde, G., Darbro, B.W., Hong, X., Clarke, J.C., Peterson, K.A., Denegre, J., Schneider, M., Sussman, C.R., Sunde, L., Lildballe, D.L., Hertz, J.M., Cornell, R.A., Murray, S.A., Manak, J.R.
- ID
- ZDB-PUB-170726-13
- Date
- 2017
- Source
- Genetics 207(1): 215-228 (Journal)
- Registered Authors
- Bonde, Greg, Cornell, Robert, Sussman, Caroline R.
- Keywords
- CAKUT, GREB1L, renal agenesis, retinoic acid, whole exome sequencing
- MeSH Terms
-
- Animals
- Congenital Abnormalities/genetics*
- Congenital Abnormalities/pathology
- Exome
- Female
- Humans
- Kidney/abnormalities*
- Kidney/embryology
- Kidney/metabolism
- Kidney/pathology
- Kidney Diseases/congenital*
- Kidney Diseases/genetics
- Kidney Diseases/pathology
- Loss of Function Mutation
- Male
- Mice
- Neoplasm Proteins/genetics*
- Neoplasm Proteins/metabolism
- Pedigree
- Proteins/genetics
- Proteins/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Zebrafish
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
- PubMed
- 28739660 Full text @ Genetics
Citation
Brophy, P.D., Rasmussen, M., Parida, M., Bonde, G., Darbro, B.W., Hong, X., Clarke, J.C., Peterson, K.A., Denegre, J., Schneider, M., Sussman, C.R., Sunde, L., Lildballe, D.L., Hertz, J.M., Cornell, R.A., Murray, S.A., Manak, J.R. (2017) A Gene Implicated in Activation of Retinoic Acid Receptor Targets is a Novel Renal Agenesis Gene in Humans. Genetics. 207(1):215-228.
Abstract
Renal agenesis (RA) is one of the more extreme examples of congenital anomalies of the kidney and urinary tract (CAKUT). Bilateral renal agenesis is almost invariably fatal at birth, and unilateral renal agenesis can lead to future health issues including end-stage renal disease. Genetic investigations have identified several gene variants that cause RA, including EYA1, LHX1, and WT1 However, whereas compound null mutations of genes encoding α and γ retinoic acid receptors (RARs) cause RA in mice, to date there have been no reports of variants in RAR genes causing RA in humans. In this study, we carried out whole exome sequence analysis of two families showing inheritance of an RA phenotype, and in both identified a single candidate gene, GREB1L Analysis of a zebrafish greb1l loss-of-function mutant revealed defects in the pronephric kidney just prior to death, and F0 CRISPR/Cas9 mutagenesis of Greb1l in the mouse revealed kidney agenesis phenotypes, implicating Greb1l in this disorder. GREB1L resides in a chromatin complex with RAR members, and our data implicate GREB1L as a coactivator for RARs. This study is the first to associate a component of the RAR pathway with renal agenesis in humans.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping