PUBLICATION

Neurocalcin Delta Suppression Protects against Spinal Muscular Atrophy in Humans and across Species by Restoring Impaired Endocytosis

Authors
Riessland, M., Kaczmarek, A., Schneider, S., Swoboda, K.J., Löhr, H., Bradler, C., Grysko, V., Dimitriadi, M., Hosseinibarkooie, S., Torres-Benito, L., Peters, M., Upadhyay, A., Biglari, N., Kröber, S., Hölker, I., Garbes, L., Gilissen, C., Hoischen, A., Nürnberg, G., Nürnberg, P., Walter, M., Rigo, F., Bennett, C.F., Kye, M.J., Hart, A.C., Hammerschmidt, M., Kloppenburg, P., Wirth, B.
ID
ZDB-PUB-170131-8
Date
2017
Source
American journal of human genetics   100(2): 297-315 (Journal)
Registered Authors
Hammerschmidt, Matthias, Löhr, Heiko
Keywords
NCALD, PLS3, SMA, SMN1, SMN2, asymptomatic, endocytosis, genetic modifier, incomplete penetrance, neuronal sensor protein, spinal muscular dystrophy
MeSH Terms
  • Survival of Motor Neuron 1 Protein/genetics
  • Survival of Motor Neuron 1 Protein/metabolism
  • Rats
  • Endocytosis/genetics*
  • Genetic Loci
  • Cell Line
  • Survival of Motor Neuron 2 Protein/genetics
  • Survival of Motor Neuron 2 Protein/metabolism
  • Male
  • PC12 Cells
  • Zebrafish/genetics
  • Pedigree
  • Genome-Wide Association Study
  • Transcriptome
  • Gene Expression Regulation
  • Motor Neurons/pathology
  • Humans
  • Mice, Inbred C57BL
  • Caenorhabditis elegans/genetics
  • Cloning, Molecular
  • Mice
  • Neurocalcin/genetics
  • Neurocalcin/metabolism*
  • Muscular Atrophy, Spinal/genetics*
  • Muscular Atrophy, Spinal/therapy
  • Female
  • Homozygote
  • Animals
  • Disease Models, Animal
PubMed
28132687 Full text @ Am. J. Hum. Genet.
Abstract
Homozygous SMN1 loss causes spinal muscular atrophy (SMA), the most common lethal genetic childhood motor neuron disease. SMN1 encodes SMN, a ubiquitous housekeeping protein, which makes the primarily motor neuron-specific phenotype rather unexpected. SMA-affected individuals harbor low SMN expression from one to six SMN2 copies, which is insufficient to functionally compensate for SMN1 loss. However, rarely individuals with homozygous absence of SMN1 and only three to four SMN2 copies are fully asymptomatic, suggesting protection through genetic modifier(s). Previously, we identified plastin 3 (PLS3) overexpression as an SMA protective modifier in humans and showed that SMN deficit impairs endocytosis, which is rescued by elevated PLS3 levels. Here, we identify reduction of the neuronal calcium sensor Neurocalcin delta (NCALD) as a protective SMA modifier in five asymptomatic SMN1-deleted individuals carrying only four SMN2 copies. We demonstrate that NCALD is a Ca2+-dependent negative regulator of endocytosis, as NCALD knockdown improves endocytosis in SMA models and ameliorates pharmacologically induced endocytosis defects in zebrafish. Importantly, NCALD knockdown effectively ameliorates SMA-associated pathological defects across species, including worm, zebrafish, and mouse. In conclusion, our study identifies a previously unknown protective SMA modifier in humans, demonstrates modifier impact in three different SMA animal models, and suggests a potential combinatorial therapeutic strategy to efficiently treat SMA. Since both protective modifiers restore endocytosis, our results confirm that endocytosis is a major cellular mechanism perturbed in SMA and emphasize the power of protective modifiers for understanding disease mechanism and developing therapies.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping