PUBLICATION

Spermidine, but not spermine, is essential for pigment pattern formation in zebrafish

Authors
Frohnhöfer, H.G., Geiger-Rudolph, S., Pattky, M., Meixner, M., Huhn, C., Maischein, H.M., Geisler, R., Gehring, I., Maderspacher, F., Nüsslein-Volhard, C., Irion, U.
ID
ZDB-PUB-160525-12
Date
2016
Source
Biology Open   5(6): 736-44 (Journal)
Registered Authors
Frohnhöfer, Hans Georg, Gehring, Ines, Geiger-Rudolph, Silke, Geisler, Robert, Irion, Uwe, Maderspacher, Florian, Maischein, Hans-Martin, Nüsslein-Volhard, Christiane
Keywords
Pattern formation, Pigmentation, Polyamine, Spermidine synthase, Spermine synthase, Zebrafish
MeSH Terms
none
PubMed
27215328 Full text @ Biol. Open
Abstract
Polyamines are small poly-cations essential for all cellular life. The main polyamines present in metazoans are putrescine, spermidine and spermine. Their exact functions are still largely unclear; however, they are involved in a wide variety of processes affecting cell growth, proliferation, apoptosis and aging. Here we identify idefix, a mutation in the zebrafish gene encoding the enzyme spermidine synthase, leading to a severe reduction in spermidine levels as shown by capillary electrophoresis-mass spectrometry. We show that spermidine, but not spermine, is essential for early development, organogenesis and colour pattern formation. Whereas in other vertebrates spermidine deficiency leads to very early embryonic lethality, maternally provided spermidine synthase in zebrafish is sufficient to rescue the early developmental defects. This allows us to uncouple them from events occurring later during colour patterning. Factors involved in the cellular interactions essential for colour patterning, likely targets for spermidine, are the gap junction components Cx41.8, Cx39.4, and Kir7.1, an inwardly rectifying potassium channel, all known to be regulated by polyamines. Thus, zebrafish provide a vertebrate model to study the in vivo effects of polyamines.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping