PUBLICATION

Dimerization is required for GARS-mediated neurotoxicity in dominant CMT disease

Authors
Malissovas, N., Griffin, L.B., Antonellis, A., Beis, D.
ID
ZDB-PUB-160325-7
Date
2016
Source
Human molecular genetics   25: 1528-42 (Journal)
Registered Authors
Beis, Dimitris
Keywords
none
MeSH Terms
  • Animals
  • Cells, Cultured
  • Charcot-Marie-Tooth Disease/genetics
  • Charcot-Marie-Tooth Disease/pathology*
  • Disease Models, Animal
  • Gene Expression Regulation
  • Glycine-tRNA Ligase/chemistry*
  • Glycine-tRNA Ligase/genetics*
  • Glycine-tRNA Ligase/metabolism
  • Humans
  • Models, Biological
  • Mutation*
  • Phenotype
  • Protein Multimerization
  • Zebrafish/embryology
  • Zebrafish/genetics
  • Zebrafish/metabolism
  • Zebrafish Proteins/chemistry*
  • Zebrafish Proteins/genetics*
  • Zebrafish Proteins/metabolism
PubMed
27008886 Full text @ Hum. Mol. Genet.
Abstract
Charcot-Marie-Tooth (CMT) disease is a genetically heterogeneous group of peripheral neuropathies. Mutations in several aminoacyl-tRNA synthetase (ARS) genes have been implicated in inherited CMT disease. There are 12 reported CMT-causing mutations dispersed throughout the primary sequence of the human glycyl-tRNA synthetase (GARS). While there is strong genetic evidence linking GARS mutations to CMT disease, the molecular pathology underlying the neuromuscular and sensory phenotypes is still not fully understood. In particular, it is unclear whether the mutations result in a toxic gain of function, a partial loss of activity related to translation, or a combination of these mechanisms. We identified a zebrafish allele ofgars(gars(s266)). Homozygous mutant embryos carry a C->A transversion, that changes a threonine to a lysine, in a residue next to a CMT-associated human mutation. We show that the neuromuscular phenotype observed in animals homozygous for T209K Gars (T130K in GARS) is due to a loss of dimerization of the mutated protein. Furthermore, we show that the loss of function, dimer-deficient and human disease-associated G319R Gars (G240R in GARS) mutant protein is unable to rescue the above phenotype. Finally, we demonstrate that another human disease-associated mutant G605R Gars (G526 in GARS) dimerizes with the remaining wild-type protein in animals heterozygous for the T209K Gars and reduces the function enough to elicit a neuromuscular phenotype. Our data indicate that dimerization is required for the dominant neurotoxicity of disease-associated GARS mutations and provide a rapid, tractable model for studying newly identified GARS variants for a role in human disease.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping