PUBLICATION

Effects of chronic tramadol exposure on the zebrafish brain: A proteomic study

Authors
Zhuo, H.Q., Huang, L., Huang, H.Q., and Cai, Z.
ID
ZDB-PUB-120418-3
Date
2012
Source
Journal of proteomics   75(11): 3351-3364 (Journal)
Registered Authors
Keywords
tramadol hydrochloride, proteomics, metabolism, abuse potential, oxidative stress
MeSH Terms
  • Analgesics, Opioid/adverse effects*
  • Analgesics, Opioid/pharmacology
  • Animals
  • Brain/metabolism*
  • Brain/ultrastructure
  • Brain Chemistry/drug effects*
  • Mitochondria/metabolism
  • Mitochondria/ultrastructure
  • Nerve Tissue Proteins/metabolism*
  • Proteomics/methods*
  • Tramadol/adverse effects*
  • Tramadol/pharmacology
  • Zebrafish
PubMed
22507199 Full text @ J. Proteomics
Abstract

Tramadol hydrochloride (TH), has become the most prescribed opioid worldwide. However, its neurotoxicity and abuse potential are not well documented. In the present study, TH administration induced abnormal behavior and body and brain mean weight loss. Two principal metabolites O- and N-desmethyltramadol were detected in the brain tissue, and N-desmethyltramadol was the main metabolite produced. A total of 30 differential protein spots were identified using semi-quantitative 2D-PAGE and proteomic analyses, and classified into 13 categories, in which subtypes of 14-3-3 proteins, creatine kinase, ATP synthase beta chain, and tubulin were identified at the separated location on the gels 3, 3, 4, and 11 times respectively. Many TH responsive proteins have functions related to oxidative stress, including 14-3-3 proteins, creatine kinase BB, ubiquitin carboxy-terminal hydrolase L-1, ATP synthase, synaptosome-associated protein, tubulin and actin. Irrespective of oxidative damage, other pathways affected include apoptosis, energy metabolism, signal disorders, and cytoskeletal structure. Ultrastructural observation of mitochondria showed a series of morphological changes in the case of TH exposure.

Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping