PUBLICATION

Characterization of C-C chemokine receptor subfamily in teleost fish

Authors
Liu, Y., Chang, M.X., Wu, S.G., and Nie, P.
ID
ZDB-PUB-081125-4
Date
2009
Source
Molecular immunology   46(3): 498-504 (Journal)
Registered Authors
Chang, Mingxian, Nie, Pin
Keywords
C–C chemokine receptor, Fish, Genome, Expression
MeSH Terms
  • Animals
  • Exons/genetics
  • Fishes/genetics*
  • Gene Expression Regulation, Developmental
  • Genome/genetics
  • Phylogeny
  • Receptors, CCR/genetics*
  • Sequence Alignment
  • Sequence Analysis, DNA
  • Sequence Homology, Amino Acid
PubMed
19022503 Full text @ Mol. Immunol.
Abstract
Chemokines and their receptors play important roles in nervous and immune systems. Little information, however, exists concerning this gene family in teleost fish. In the present study, 17 C-C chemokine receptors genes were identified from Danio rerio, 9 from Gasterosteus aculeatus, 10 from Oryzias latipes, 8 from Takifugu rubripes and 5 from Tetraodon nigroviridis. Phylogenetic analysis showed that the orthologs to mammalian CCR6, 7, 8, 9 and CCRL1 receptors were evident in zebrafish, but the clear orthologs to mammalian CCR1, 2, 3, 4, 5 and 10 were not found in zebrafish. The gene structure of zebrafish CCR (zfCCR) was further analyzed. The open reading frame of zfCCR3-1, zfCCR3-3, zfCCR6-1, zfCCR6-2, zfCCR8-2 contain one exon, and two exons were identified for zfCCR2-1, zfCCR2-2, zfCCR4 and zfCCRL1-1, three exons for zfCCR3-2, zfCCR5 and zfCCR7, four exons for zfCCR8-1 and zfCCR9-1. The expression analyses showed that in zebrafish, most C-C chemokine receptor genes were expressed in fertilized eggs and oocytes, and all the receptor genes were expressed in larval stages. The zfCCR2-2, zfCCR3-1, zfCCR4 and zfCCR6-2 genes were expressed in all normal organs examined, whereas not for zfCCR2-1, zfCCR3-3, zfCCR6-1, zfCCR8-1, zfCCR9-2 and zfCCRL1-2. The expression of zfCCR3-2, zfCCR5, zfCCR7, zfCCR9-1 and zfCCRL1-1 were detected in the majority organs, and zfCCR8-2 and zfCCR8-3 detected only in brain. The differential expression pattern of different paralogues in organs may indicate their difference in function, which requires further investigation.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping