PUBLICATION

Tissue-specific requirements for specific domains in the FERM protein Moe/Epb4.1l5 during early zebrafish development

Authors
Christensen, A.K., and Jensen, A.M
ID
ZDB-PUB-080209-7
Date
2008
Source
BMC Developmental Biology   8: 3 (Journal)
Registered Authors
Jensen, Abigail
Keywords
none
MeSH Terms
  • Animals
  • Blotting, Western
  • Cell Polarity
  • Cytoskeletal Proteins
  • Embryo, Nonmammalian/embryology
  • Eye Proteins/genetics*
  • Gene Expression Regulation, Developmental
  • Immunohistochemistry
  • Membrane Proteins/genetics
  • Mice
  • Mutation
  • PDZ Domains
  • RNA, Messenger/genetics
  • Rod Cell Outer Segment/embryology
  • Zebrafish/embryology*
  • Zebrafish/genetics*
  • Zebrafish Proteins/genetics*
PubMed
18190700 Full text @ BMC Dev. Biol.
Abstract
BACKGROUND: The FERM domain containing protein Mosaic Eyes (Moe) interacts with Crumbs proteins, which are important regulators of apical identity and size. In zebrafish, loss-of-function mutations in moe result in defects in brain ventricle formation, retinal pigmented epithelium and neural retinal development, pericardial edema, and tail curvature. In humans and mice, there are two major alternately spliced isoforms of the Moe orthologue, Erythrocyte Protein Band 4.1-Like 5 (Epb4.1l5), which we have named Epb4.1l5long and Epb4.1l5short, that differ after the FERM domain. Interestingly, Moe and both Epb4.1l5 isoforms have a putative C' terminal Type-I PDZ-Binding Domain (PBD). We previously showed that the N' terminal FERM domain in Moe directly mediates interactions with Crumbs proteins and Nagie oko (Nok) in zebrafish, but the function of the C'terminal half of Moe/Epb4.1l5 has not yet been examined. RESULTS: To define functionally important domains in zebrafish Moe and murine Epb4.1l5, we tested whether injection of mRNAs encoding these proteins could rescue defects in zebrafish moe- embryos. Injection of either moe or epb4.1l5long mRNA, but not epb4.1l5short mRNA, could rescue moe- embryonic defects. We also tested whether mRNA encoding C' terminal truncations of Epb4.1l5long or chimeric constructs with reciprocal swaps of the isoform-specific PBDs could rescue moe- defects. We found that injection of the Epb4.1l5short chimera (Epb4.1l5short+long_PBD), containing the PBD from Epb4.1l5long, could rescue retinal and RPE defects in moe- mutants, but not brain ventricle formation. Injection of the Epb4.1l5long chimera (Epb4.1l5long+short_PBD), containing the PBD from Epb4.1l5short, rescued retinal defects, and to a large extent rescued RPE integrity. The only construct that caused a dominant phenotype in wild-type embryos was Epb4.1l5long+short_PBD, which caused brain ventricle defects and edema that were similar to those observed in moe- mutants. Lastly, the morphology of rod photoreceptors in moe- mutants where embryonic defects were rescued by moe or epb4.1l5long mRNA injection is abnormal and their outer segments are larger than normal. CONCLUSIONS: Taken together, the data reveal tissue specificity for the function of the PBD in Epb4.1l5long, and suggest that additional C' terminal sequences are important for zebrafish retinal development. Additionally, our data provide further evidence that Moe is a negative regulator of rod outer segment size.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping