PUBLICATION

Mlh1 Deficiency In Zebrafish Results In Male Sterility And Aneuploid As Well As Triploid Progeny In Females

Authors
Feitsma, H., Leal, M.C., Moens, P.B., Cuppen, E., and Schulz, R.W.
ID
ZDB-PUB-070210-16
Date
2007
Source
Genetics   175(4): 1561-1569 (Journal)
Registered Authors
Cuppen, Edwin, Feitsma, Harma
Keywords
aneuploidy, meisosis, mismatch repair, zebrafish
MeSH Terms
  • Aneuploidy
  • Animals
  • Base Sequence
  • Crossing Over, Genetic/genetics
  • DNA Mismatch Repair
  • DNA Primers/genetics
  • DNA Repair Enzymes/deficiency*
  • DNA Repair Enzymes/genetics
  • Female
  • Infertility, Male/genetics*
  • Infertility, Male/metabolism*
  • Infertility, Male/pathology
  • Male
  • Meiosis/genetics
  • Mutation
  • Phenotype
  • Polyploidy
  • Seminiferous Tubules/pathology
  • Zebrafish/genetics*
  • Zebrafish/metabolism*
  • Zebrafish Proteins/deficiency*
  • Zebrafish Proteins/genetics
PubMed
17237513 Full text @ Genetics
Abstract
In most eukaryotes, recombination of homologous chromosomes during meiosis is necessary for proper chromosome pairing and subsequent segregation. The molecular mechanisms of meiosis are still relatively unknown, but numerous genes are known to be involved, among which many mismatch repair genes. One of them, mlh1, colocalizes with presumptive sites of crossing-over, but its exact action remains unclear. We studied meiotic processes in a knockout line for mlh1 in zebrafish. Male mlh1 mutants are sterile and display an arrest in spermatogenesis at metaphase I, resulting in increased testis weight due to accumulation of prophase I spermatocytes. In contrast, females are fully fertile, but their progeny shows high rates of dysmorphology and mortality within the first days of development. SNP-based chromosome analysis shows that this is caused by aneuploidy, resulting from meiosis I chromosomal missegregation. Surprisingly, the small percentage of progeny that develops normally has a complete triploid genome, consisting of both sets of maternal and one set of paternal chromosomes. As adults, these triploid fish are infertile males with wild-type appearance. The frequency of triploid progeny of mlh1 mutant females is much higher than could be expected for random chromosome segregation. Together, these results show that multiple solutions exist for meiotic cross-over/segregation problems.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping