PUBLICATION

Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system

Authors
Poirier, S., Prat, A., Marcinkiewicz, E., Paquin, J., Chitramuthu, B.P., Baranowski, D., Cadieux, B., Bennett, H.P., and Seidah, N.G.
ID
ZDB-PUB-060816-15
Date
2006
Source
Journal of neurochemistry   98(3): 838-850 (Journal)
Registered Authors
Cadieux, Benoit
Keywords
none
MeSH Terms
  • Animals
  • Cell Differentiation/physiology
  • Cell Line, Tumor
  • Cholesterol/biosynthesis
  • Cholesterol/genetics
  • Humans
  • Liver/enzymology
  • Mice
  • Nervous System/cytology
  • Nervous System/embryology
  • Nervous System/enzymology*
  • Nervous System/growth & development*
  • Proprotein Convertase 1/biosynthesis
  • Proprotein Convertase 1/genetics
  • Proprotein Convertase 1/physiology*
  • Proprotein Convertases
  • Serine Endopeptidases/biosynthesis
  • Serine Endopeptidases/deficiency
  • Serine Endopeptidases/genetics
  • Serine Endopeptidases/physiology*
  • Zebrafish
PubMed
16893422 Full text @ J. Neurochem.
Abstract
Neural apoptosis-regulated convertase-1/proprotein convertase subtilisin-kexin like-9 (NARC-1/PCSK9) is a proprotein convertase recently described to play a major role in cholesterol homeostasis through enhanced degradation of the low-density lipoprotein receptor (LDLR) and possibly in neural development. Herein, we investigated the potential involvement of this proteinase in the development of the CNS using mouse embryonal pluripotent P19 cells and the zebrafish as models. Time course quantitative RT-PCR analyses were performed following retinoic acid (RA)-induced neuroectodermal differentiation of P19 cells. Accordingly, the mRNA levels of NARC-1/PCSK9 peaked at day 2 of differentiation and fell off thereafter. In contrast, the expression of the proprotein convertases subtilisin kexin isozyme 1/site 1 protease and Furin was unaffected by RA, whereas that of PC5/6 and PC2 increased within and/or after the first 4 days of the differentiation period respectively. This pattern was not affected by the cholesterogenic transcription factor sterol regulatory element-binding protein-2, which normally up-regulates NARC-1/PCSK9 mRNA levels in liver. Furthermore, in P19 cells, RA treatment did not affect the protein level of the endogenous LDLR. This agrees with the unique expression pattern of NARC-1/PCSK9 in the rodent CNS, including the cerebellum, where the LDLR is not significantly expressed. Whole-mount in situ hybridization revealed that the pattern of expression of zebrafish NARC-1/PCSK9 is similar to that of mouse both in the CNS and periphery. Specific knockdown of zebrafish NARC-1/PCSK9 mRNA resulted in a general disorganization of cerebellar neurons and loss of hindbrain-midbrain boundaries, leading to embryonic death at approximately 96 h after fertilization. These data support a novel role for NARC-1/PCSK9 in CNS development, distinct from that in cholesterogenic organs such as liver.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping