PUBLICATION
Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish
- Authors
- Rhodes, J., Hagen, A., Hsu, K., Deng, M., Liu, T.X., Look, A.T., and Kanki, J.P.
- ID
- ZDB-PUB-050104-3
- Date
- 2005
- Source
- Developmental Cell 8(1): 97-108 (Journal)
- Registered Authors
- Hsu, Karl, Kanki, John, Liu, Ting Xi, Look, A. Thomas, Rhodes, Jennifer
- Keywords
- none
- MeSH Terms
-
- Myeloid Progenitor Cells/physiology*
- Trans-Activators/genetics
- Trans-Activators/physiology*
- In Situ Hybridization/methods
- Microinjections/methods
- Transplantation/methods
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology*
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Cell Differentiation/physiology
- Erythroid Precursor Cells/physiology*
- Cell Movement/physiology
- Flow Cytometry/methods
- Animals
- Genotype
- Animals, Genetically Modified
- Models, Biological
- RNA, Messenger/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology*
- Zebrafish/embryology
- Erythroid-Specific DNA-Binding Factors
- Gene Expression Regulation, Developmental/physiology
- Embryonic Induction
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Hematopoiesis/physiology
- GATA1 Transcription Factor
- Transcription Factors/genetics
- Transcription Factors/physiology*
- PubMed
- 15621533 Full text @ Dev. Cell
Citation
Rhodes, J., Hagen, A., Hsu, K., Deng, M., Liu, T.X., Look, A.T., and Kanki, J.P. (2005) Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Developmental Cell. 8(1):97-108.
Abstract
The zebrafish is a powerful model system for investigating embryonic vertebrate hematopoiesis, allowing for the critical in vivo analysis of cell lineage determination. In this study, we identify zebrafish myeloerythroid progenitor cells (MPCs) that are likely to represent the functional equivalent of mammalian common myeloid progenitors. Utilizing transgenic pu.1-GFP fish, real-time MPC differentiation was correlated with dynamic changes in cell motility, morphology, and gene expression. Unlike mammalian hematopoiesis, embryonic zebrafish myelopoiesis and erythropoiesis occur in anatomically separate locations. Gene knockdown experiments and transplantation assays demonstrated the reciprocal negative regulation of pu.1 and gata1 and their non-cell-autonomous regulation that determines myeloid versus erythroid MPC fate in the distinct blood-forming regions. Furthermore, forced expression of pu.1 in the bloodless mutant cloche resulted in myelopoietic rescue, providing intriguing evidence that this gene can function in the absence of some stem cell genes, such as scl, in governing myelopoiesis.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping