PUBLICATION
Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation
- Authors
- Heisenberg, C.P., Tada, M., Rauch, G.J., Saude, L., Concha, M.L., Geisler, R., Stemple, D.L., Smith, J.C., and Wilson, S.W.
- ID
- ZDB-PUB-000518-1
- Date
- 2000
- Source
- Nature 405(6782): 76-81 (Journal)
- Registered Authors
- Concha, Miguel, Geisler, Robert, Heisenberg, Carl-Philipp, Rauch, Gerd-Jörg, Saude, Leonor, Smith, Jim, Stemple, Derek L., Tada, Masazumi, Wilson, Steve
- Keywords
- none
- MeSH Terms
-
- Animals
- Cell Movement/genetics
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/physiology
- Gastrula/cytology
- Gastrula/physiology*
- Glycoproteins/genetics
- Glycoproteins/physiology*
- Mutation
- Signal Transduction
- Wnt Proteins
- Zebrafish
- Zebrafish Proteins
- PubMed
- 10811221 Full text @ Nature
Citation
Heisenberg, C.P., Tada, M., Rauch, G.J., Saude, L., Concha, M.L., Geisler, R., Stemple, D.L., Smith, J.C., and Wilson, S.W. (2000) Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature. 405(6782):76-81.
Abstract
Vertebrate gastrulation involves the specification and coordinated movement of large populations of cells that give rise to the ectodermal, mesodermal and endodermal germ layers. Although many of the genes involved in the specification of cell identity during this process have been identified, little is known of the genes that coordinate cell movement. Here we show that the zebrafish silberblick (slb) locus encodes Wnt11 and that Slb/Wnt11 activity is required for cells to undergo correct convergent extension movements during gastrulation. In the absence of Slb/Wnt11 function, abnormal extension of axial tissue results in cyclopia and other midline defects in the head. The requirement for Slb/Wnt11 is cell non-autonomous, and our results indicate that the correct extension of axial tissue is at least partly dependent on medio-lateral cell intercalation in paraxial tissue. We also show that the slb phenotype is rescued by a truncated form of Dishevelled that does not signal through the canonical Wnt pathway, suggesting that, as in flies, Wnt signalling might mediate morphogenetic events through a divergent signal transduction cascade. Our results provide genetic and experimental evidence that Wnt activity in lateral tissues has a crucial role in driving the convergent extension movements underlying vertebrate gastrulation.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping