IMAGE

Fig. 2

ID
ZDB-IMAGE-160511-4
Genes
Source
Figures for DeRossi et al., 2016
Image
Figure Caption

Fig. 2

Mutation of trappc11 in zebrafish causes secretory pathway defects. (A) Confocal microscopy on cryosections from 4- and 5-dpf trappc11 mutants and phenotypically WT siblings that ubiquitously express a Golgi apparatus marker (green), Tg(actb2:GalT-GFP), and a hepatocyte-specific ER marker (red), Tg(fabp10:ER-td-TMT). Hepatocytes that show abnormal morphology, that is, fragmented Golgi apparatus and distended ER, are marked with arrows and asterisks, respectively, and quantified (B) as percentage abnormal to total hepatocytes counted (# cells) from number of fish counted (n). The p values were calculated using Fisher’s exact test. (C) Bright-field and fluorescence images of 3- to 5-dpf WT and trappc11 transgenic Tg(fabp10:Gc-EGFP) larvae demonstrate GFP accumulation in the liver of trappc11 mutants, similar to that seen with BFA-treated (1 µg/ml) control larvae, which indicates defective protein secretion. Arrows indicate livers where Gc-EGFP is being produced, and arrowheads show secreted Gc-EGFP in the vasculature. (D) Confocal images of livers from 5-dpf WT and trappc11 mutants that express both the secreted Gc-EGFP (green) protein and the ER marker ER-tdTMT (red) confirms accumulation in the ER of mutant hepatocytes, evidenced by colocalization of both markers. (E) Western analysis of WT and trappc11-mutant livers using anti-GFP to detect Gc-EGFP and anti-Histone H3 as a loading control. Two independent clutches are shown for liver samples. Eight pooled livers and one liverless carcass were loaded. Bars, 10 µm (A, D).

Figure Data
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ Mol. Biol. Cell